Skip to main content

multiples of 16

Multiplication  Table for 16    
16     x       1       =       16
16     x       2       =       32
16     x       3       =       48
16     x       4       =       64
16     x       5       =       80
16     x       6       =       96
16     x       7       =       112
16     x       8       =       128
16     x       9       =       144
16     x       10     =       160
16     x       11     =       176
16     x       12     =       192
16     x       13     =       208
16     x       14     =       224
16     x       15     =       240
16     x       16     =       256
16     x       17     =       272
16     x       18     =       288
16     x       19     =       304
16     x       20     =       320


As shown in the above multiplication table, multiples of 16 are

16,32,48,64,80,........ 


Remaining multiples from 16 to 800 are shown in the below table


16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448
464
480
496
512
528
544
560
576
592
608
624
640
656
672
688
704
720
736
752
768
784
800

Comments

Popular posts from this blog

Average of first n even numbers

Even numbers are 2,4,6,8,10,…. Average = sum of elements/ no of elments Now we will see the sum of elements: Sum of first 2 even numbers: 2+4= 6= 2(2+1) Sum of first 3 even numbers: 2+4+6= 12= 3(3+1) Sum of first 4 even  numbers: 2+4+6+8=20= 4(4+1) Sum of first 5 even numbers: 2+4+6+8+10 = 30 = 5(5+1) Sum of first n even numbers: 2+4+6+8+10+. . . . .  n numbers= n(n+1) Now we will see average: Average of first 2 even numbers= (2+4)/2                                                           = 6/2                              ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

MULTIPLICATION OF TWO CONSECUTIVE NUMBERS

If you observe the sum of each digit in the Multiplication of two consectuive no.  pattern repeating:  2 6 3  2 3 6 2 9 9  n X n+1 Multiplication of two consectuive no. Sum of two digits 1X2 2 2 2X3 6 6 3X4 12 3 4X5 20 2 5X6 30 3 6X7 42 6 7X8 56 2 8X9 72 9 9X10 90 9 10X11 110 2 11X12 132 6 12X13 156 3 13X14 182 2 14X15 210 3 15X16 240 6 16X17 272 2 17X18 306 9 18X19 342 9 19X20 380 2 20X21 420 6 21X22 462 3 22X23 506 2 23X24 552 3 24X25 600 6 25X26 650 2 26X27 702 9 27X28 ...