Skip to main content

MULTIPLICATION OF TWO CONSECUTIVE NUMBERS




If you observe the sum of each digit in the Multiplication of two consectuive no.  pattern repeating:
 2 6 3  2 3 6 2 9 9 




n X n+1
Multiplication of two consectuive no.
Sum of two digits
1X2
2
2
2X3
6
6
3X4
12
3
4X5
20
2
5X6
30
3
6X7
42
6
7X8
56
2
8X9
72
9
9X10
90
9
10X11
110
2
11X12
132
6
12X13
156
3
13X14
182
2
14X15
210
3
15X16
240
6
16X17
272
2
17X18
306
9
18X19
342
9
19X20
380
2
20X21
420
6
21X22
462
3
22X23
506
2
23X24
552
3
24X25
600
6
25X26
650
2
26X27
702
9
27X28
756
9
28X29
812
2
29X30
870
6
30X31
930
3
31X32
992
2
32X33
1056
3
33X34
1122
6
34X35
1190
2
35X36
1260
9
36X37
1332
9
37X38
1406
2
38X39
1482
6
39X40
1560
3
40X41
1640
2
41X42
1722
3
42X43
1806
6
43X44
1892
2
44X45
1980
9
45X46
2070
9
46X47
2162
2
47X48
2256
6
48X49
2352
3
49X50
2450
2
50X51
2550
3
51X52
2652
6
52X53
2756
2
53X54
2862
9
54X55
2970
9
55X56
3080
2
56X57
3192
6
57X58
3306
3
58X59
3422
2
59X60
3540
3
60X61
3660
6
61X62
3782
2
62X63
3906
9
63X64
4032
9
64X65
4160
2
65X66
4290
6
66X67
4422
3
67X68
4556
2
68X69
4692
3
69X70
4830
6
70X71
4970
2
71X72
5112
9
72X73
5256
9
73X74
5402
2
74X75
5550
6
75X76
5700
3
76X77
5852
2
77X78
6006
3
78X79
6162
6
79X80
6320
2
80X81
6480
9
81X82
6642
9
82X83
6806
2
83X84
6972
6
84X85
7140
3
85X86
7310
2
86X87
7482
3
87X88
7656
6
88X89
7832
2
89X90
8010
9
90X91
8190
9
91X92
8372
2
92X93
8556
6
93X94
8742
3
94X95
8930
2
95X96
9120
3
96X97
9312
6
97X98
9506
2
98X99
9702
9
99X100
9900
9
100X101
10100
2


Comments

Popular posts from this blog

average of first 100 odd numbers

  Odd  numbers are 1,3,5,7,9,…. Average = sum of elements/  no  of elments Now we will see the sum of elements: Sum of first 2 odd  numbers: 1+3= 4= 2 2 Sum of first 3 odd  numbers: 1+3+5= 9= 3 2 Sum of first 4 odd  numbers: 1+3+5+7=16= 4 2 Sum of first 5 odd  numbers: 1+3+5+7+9 = 25 = 5 2 Sum of first n odd  numbers: 1+3+5+7+9+. . . . .  n numbers= n 2 Now we will see average: Average of first 2 odd numbers= (1+3)/2                                                           = 4/2                           ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

average of first n natural numbers

The natural numbers are 1,2,3,4,5,. . . . . . now we will see the sum of natural numbers                       sum of first 3 natural numbers= 1+2+3=6 the above can be written as                      sum of first 3 natural numbers= 1+2+3=6=3(3+1)/2                      sum of first 4 natural numbers= 1+2+3+4=4(4+1)/2                      then sum of n natural numbers=1+2+3+......n terms=n(n+1)/2 then the average formula = sum of elements/no of elements                     the average of n natural numbers= sum of elements/ no of elements                                                ...