Skip to main content

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3
A
B
C
D
E
F
G
H
I
The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same
A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum
A+B+C
D+E+F
G+H+I
A+D+G
B+E+H
C+F+I
A+E+I
C+E+G
By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1:
There are 8 different combinations are there with same sum in a magic square.
In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times
Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations.
Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From combination formula we can find out the the number of ways we can write
Combinations= 9c=84.
From 9 numbers by taking 3 numbers at a time we can form 84 combinations. All 84 combinations we are showing here.






1+2+3=6
2+3+4=9
3+4+5=12
4+5+6=15
5+6+7=18
6+7+8=21
7+8+9=24
1+2+4=7
2+3+5=10
3+4+6=13
4+5+7=16
5+6+8=19
6+7+9=22
(1)
1+2+5=8
2+3+6=11
3+4+7=14
4+5+8=17
5+6+9=20
6+8+9=23

1+2+6=9
2+3+7=12
3+4+8=15
4+5+9=18
5+7+8=20


1+2+7=10
2+3+8=13
3+4+9=16
4+6+7=17
5+7+9=21
(3)

1+2+8=11
2+3+9=14
3+5+6=14
4+6+8=18
5+8+9=22


1+2+9=12
2+4+5=11
3+5+7=15
4+6+9=19



1+3+4=8
2+4+6=12
3+5+8=16
4+7+8=19
(6)


1+3+5=9
2+4+7=13
3+5+9=17
4+7+9=20



1+3+6=10
2+4+8=14
3+6+7=16
4+8+9=21



1+3+7=11
2+4+9=15
3+6+8=17




1+3+8=12
2+5+6=13
3+6+9=18
(10)



1+3+9=13
2+5+7=14
3+7+8=18




1+4+5=10
2+5+8=15
3+7+9=19




1+4+6=11
2+5+9=16
3+8+9=20




1+4+7=12
2+6+7=15





1+4+8=13
2+6+8=16
(15)




1+4+9=14
2+6+9=17





1+5+6=12
2+7+8=17





1+5+7=13
2+7+9=18





1+5+8=14
2+8+9=19





1+5+9=15






1+6+7=14
(21)





1+6+8=15






1+6+9=16






1+7+8=16






1+7+9=17






1+8+9=18






(28)

Total 84 combinations

As you seen above table total combinations from 9 numbers by taking 3 numbers at a time is
28+21+15+10+6+3+1=84.
Now we will verify the sum of the combinations







Sum=6 combinations
1
Sum=7 combinations
1
Sum=8 combinations
2
Sum=9 combinations
3
Sum=10 combinations
4
Sum=11combinations
5
Sum=12 combinations
7
Sum=13combinations
7
Sum=14 combinations
8
Sum=15 combinations
8
Sum=16combinations
8
Sum=17 combinations
7
Sum=18 combinations
7
Sum=19 combinations
5
Sum=20 combinations
4
Sum=21 combinations
3
Sum=22 combinations
2
Sum=23 combinations
1
Sum=24 combinations
1
TOTAL
84 COMBINATION
By seeing the above table in SUM=14,SUM=15,SUM=16,  there are 8 combinations are available. So condition#1 is satisfied for sum=14, sum=15, sum=16. Since we will analyse the above 3 for condition#2. The following table analyses the condition#2.
Sum=14 combinaztions
Sum=15 combinaztions
Sum=16 combinations
1+4+9
1+5+9
4+5+7
1+5+8
1+6+9
3+4+9
1+6+7
2+4+9
3+5+8
2+3+9
2+5+8
3+6+7
2+4+8
2+6+7
2+5+9
2+5+7
3+4+8
2+6+8
3+4+7
3+5+7
1+6+9
3+5+6
4+5+6
1+7+8
In the above condition number#2 is satisfied for the sum=15. Since to prepare a magic square sum=15 combinations are suitable because 5 is appeared 4 times. Remaining combinations are not suitable. Now we can prepare the magic square with sum=15 combinations. The different combinations to prepare the magic square 1+5+9, 1+6+9, 2+4+9, 2+5+8, 2+6+7, 3+4+8, 3+5+7, 4+5+6. In this combinations 5 appeared 4 times. By using the above combinations the magic square is like follows.
4
9
2
 3
5
7
8
1
6
In the above magic square 3x3 we are used numbers from1 to 9 arranged in 9 boxes. In any direction the sum equal to 15.
Row wise  4+9+2=15, 3+5+7=15, 8+1+6=15.
Column wise 4+3+8=15, 9+5+1=15, 2+7+6=15.
Diagnol wise: 4+5+6=15, 2+5+8=15.
 



Comments

Post a Comment

Popular posts from this blog

pythagoras triangle numbers from difference between two adjacent numbers

1 2 =1x1=1                           ---->3 2 2 =2x2=4                           ---->5 3 2 =3x3=9                           ---->7 4 2 =4x4= 16                           ----> 9 --->(pythagoras numbers 16+9=25 ==>  4 2 +3 2   = 5 2 ) 5 2 =5x5= 25                           ---->11  6 2 =6x6=36            ...

product two consecutive odd numbers

Product of two consecutive odd numbers : Even numbers are 1,3,5,7,9,11,13,15,17,19,21,23,25,..... Odd  number means when we divide a number with 2,then the remainder is equal to one. Difference between the two odd numbers is 1. Now we will discuss the product of two odd  numbers. Now the product of two even numbers assumed to be 5x7 can be written as (6-1)x(6+1).                              5x7= (6-1)x(6+1) From the above we write general formula as 5x7= (6-1)x(6+1)=6 2 -1 2  =36-1=35 Now we can observe the result as one less than the square number. So now we can observe the following table. Column 1&2 reprecent the adjacent odd numbers. Column 3 represent the product of two adjacent odd numbers. Column 4 represent  the nearest square number. This  will arrive by adding 1 to the product  of two odd ...

Square roots from n0 to n10

n  1 n  2 n  3 n  4 n  5 1  0 =1 2  0 =1 3  0 =1 4  0 =1 5  0 =1 1  1 =1 2  1 =2 3  1 =3 4  1 =4 5  1 =5 1  2 =1 2  2 =4 3  2 =9 4  2 =16 5  2 =25 1  3 =1 2  3 =8 3  3 =27 4  3 =64 5  3 =125 1  4 =1 2  4 =16 3  4 =81 4  4 =256 5  4 =625 1  5 =1 2  5 =32 3  5 =243 4  5 =1024 5  5 =3125 1  6 =1 2  6 =64 3  6 =729 4  6 =4096 5  6 =15625 1  7 =1 2  7 =128 3  7 =2187 4  7 =16384 5  7 =78125 1  8 =1 2  8 =256 3  8 =6561 4  8 =65536 5  8 =390625 1  9 =1 2  9 =512 3  9 =19683 4  9 =262144 5  9 =1953125 1  10 =1 2  10 =1024 3  10 =59049 4  10 =1048576 5  10 =9765625 n  6 n  7 n  8 n  9 n  10 6  0 =1 7  0 =1 8  0 =1 9  0 =1 10  0 =1 6...