Assume a magic square of 3x3
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
The above figure shows a 3x3 magic square.
In the magic square sum of colum, row, diagnol numbers should be same
A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum
A+B+C
|
D+E+F
|
G+H+I
|
A+D+G
|
B+E+H
|
C+F+I
|
A+E+I
|
C+E+G
|
By
seeing the above there is 8 type of sum is available. Row wise-3, column
wise-3, diagnol wise-2. Condition#1:
There
are 8 different combinations are there with same sum in a magic square.
In the above 8 combinations A=2 times, B= 3
times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2
times
Hence the above forms the condition#2. In
simply condition#2, middle number E appears 4 times in 8 combinations.
Hence row, column, diagnol sum should be
equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we
need to take 3 numbers. From combination formula we can find out the the number
of ways we can write
Combinations= 9c3 =84.
From
9 numbers by taking 3 numbers at a time we can form 84 combinations. All 84
combinations we are showing here.
1+2+3=6
|
2+3+4=9
|
3+4+5=12
|
4+5+6=15
|
5+6+7=18
|
6+7+8=21
|
7+8+9=24
|
1+2+4=7
|
2+3+5=10
|
3+4+6=13
|
4+5+7=16
|
5+6+8=19
|
6+7+9=22
|
(1)
|
1+2+5=8
|
2+3+6=11
|
3+4+7=14
|
4+5+8=17
|
5+6+9=20
|
6+8+9=23
|
|
1+2+6=9
|
2+3+7=12
|
3+4+8=15
|
4+5+9=18
|
5+7+8=20
|
||
1+2+7=10
|
2+3+8=13
|
3+4+9=16
|
4+6+7=17
|
5+7+9=21
|
(3)
|
|
1+2+8=11
|
2+3+9=14
|
3+5+6=14
|
4+6+8=18
|
5+8+9=22
|
||
1+2+9=12
|
2+4+5=11
|
3+5+7=15
|
4+6+9=19
|
|||
1+3+4=8
|
2+4+6=12
|
3+5+8=16
|
4+7+8=19
|
(6)
|
||
1+3+5=9
|
2+4+7=13
|
3+5+9=17
|
4+7+9=20
|
|||
1+3+6=10
|
2+4+8=14
|
3+6+7=16
|
4+8+9=21
|
|||
1+3+7=11
|
2+4+9=15
|
3+6+8=17
|
||||
1+3+8=12
|
2+5+6=13
|
3+6+9=18
|
(10)
|
|||
1+3+9=13
|
2+5+7=14
|
3+7+8=18
|
||||
1+4+5=10
|
2+5+8=15
|
3+7+9=19
|
||||
1+4+6=11
|
2+5+9=16
|
3+8+9=20
|
||||
1+4+7=12
|
2+6+7=15
|
|||||
1+4+8=13
|
2+6+8=16
|
(15)
|
||||
1+4+9=14
|
2+6+9=17
|
|||||
1+5+6=12
|
2+7+8=17
|
|||||
1+5+7=13
|
2+7+9=18
|
|||||
1+5+8=14
|
2+8+9=19
|
|||||
1+5+9=15
|
||||||
1+6+7=14
|
(21)
|
|||||
1+6+8=15
|
||||||
1+6+9=16
|
||||||
1+7+8=16
|
||||||
1+7+9=17
|
||||||
1+8+9=18
|
||||||
(28)
|
Total 84 combinations
|
As you seen above table total combinations
from 9 numbers by taking 3 numbers at a time is
28+21+15+10+6+3+1=84.
Now we will verify the sum of the
combinations
Sum=6 combinations
|
1
|
Sum=7 combinations
|
1
|
Sum=8 combinations
|
2
|
Sum=9 combinations
|
3
|
Sum=10 combinations
|
4
|
Sum=11combinations
|
5
|
Sum=12 combinations
|
7
|
Sum=13combinations
|
7
|
Sum=14 combinations
|
8
|
Sum=15 combinations
|
8
|
Sum=16combinations
|
8
|
Sum=17 combinations
|
7
|
Sum=18 combinations
|
7
|
Sum=19 combinations
|
5
|
Sum=20 combinations
|
4
|
Sum=21 combinations
|
3
|
Sum=22 combinations
|
2
|
Sum=23 combinations
|
1
|
Sum=24 combinations
|
1
|
TOTAL
|
84 COMBINATION
|
By seeing the above table in SUM=14,SUM=15,SUM=16, there are 8 combinations are available. So
condition#1 is satisfied for sum=14, sum=15, sum=16. Since we will analyse the
above 3 for condition#2. The following table analyses the condition#2.
Sum=14 combinaztions
|
Sum=15 combinaztions
|
Sum=16 combinations
|
1+4+9
|
1+5+9
|
4+5+7
|
1+5+8
|
1+6+9
|
3+4+9
|
1+6+7
|
2+4+9
|
3+5+8
|
2+3+9
|
2+5+8
|
3+6+7
|
2+4+8
|
2+6+7
|
2+5+9
|
2+5+7
|
3+4+8
|
2+6+8
|
3+4+7
|
3+5+7
|
1+6+9
|
3+5+6
|
4+5+6
|
1+7+8
|
In the above condition number#2 is
satisfied for the sum=15. Since to prepare a magic square sum=15 combinations
are suitable because 5 is appeared 4 times. Remaining combinations are not
suitable. Now we can prepare the magic square with sum=15 combinations. The
different combinations to prepare the magic square 1+5+9, 1+6+9, 2+4+9, 2+5+8,
2+6+7, 3+4+8, 3+5+7, 4+5+6. In this combinations 5 appeared 4 times. By using
the above combinations the magic square is like follows.
4
|
9
|
2
|
3
|
5
|
7
|
8
|
1
|
6
|
In the above magic square 3x3 we are used
numbers from1 to 9 arranged in 9 boxes. In any direction the sum equal to 15.
Row wise
4+9+2=15, 3+5+7=15, 8+1+6=15.
Column wise 4+3+8=15, 9+5+1=15, 2+7+6=15.
Diagnol wise: 4+5+6=15, 2+5+8=15.
very nice
ReplyDelete