Skip to main content

multiples of 13

Multiplication Table for 13    
13     x       1       =       13
13     x       2       =       26
13     x       3       =       39
13     x       4       =       52
13     x       5       =       65
13     x       6       =       78
13     x       7       =       91
13     x       8       =       104
13     x       9       =       117
13     x       10     =       130
13     x       11     =       143
13     x       12     =       156
13     x       13     =       169
13     x       14     =       182
13     x       15     =       195
13     x       16     =       208
13     x       17     =       221
13     x       18     =       234
13     x       19     =       247

13     x       20     =       260

As shown in the above  multiplication table, multiples of 13 are

13,26,39,52,65,78,91,104,117,130,........ 


Remaining multiples from 13 to 1300 are shown in the below table


13
26
39
52
65
78
91
104
117
130
143
156
169
182
195
208
221
234
247
260
273
286
299
312
325
338
351
364
377
390
403
416
429
442
455
468
481
494
507
520
533
546
559
572
585
598
611
624
637
650
663
676
689
702
715
728
741
754
767
780
793
806
819
832
845
858
871
884
897
910
923
936
949
962
975
988
1001
1014
1027
1040
1053
1066
1079
1092
1105
1118
1131
1144
1157
1170
1183
1196
1209
1222
1235
1248
1261
1274
1287
1300


Comments

Popular posts from this blog

Average of first n even numbers

Even numbers are 2,4,6,8,10,…. Average = sum of elements/ no of elments Now we will see the sum of elements: Sum of first 2 even numbers: 2+4= 6= 2(2+1) Sum of first 3 even numbers: 2+4+6= 12= 3(3+1) Sum of first 4 even  numbers: 2+4+6+8=20= 4(4+1) Sum of first 5 even numbers: 2+4+6+8+10 = 30 = 5(5+1) Sum of first n even numbers: 2+4+6+8+10+. . . . .  n numbers= n(n+1) Now we will see average: Average of first 2 even numbers= (2+4)/2                                                           = 6/2                              ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

MULTIPLICATION OF TWO CONSECUTIVE NUMBERS

If you observe the sum of each digit in the Multiplication of two consectuive no.  pattern repeating:  2 6 3  2 3 6 2 9 9  n X n+1 Multiplication of two consectuive no. Sum of two digits 1X2 2 2 2X3 6 6 3X4 12 3 4X5 20 2 5X6 30 3 6X7 42 6 7X8 56 2 8X9 72 9 9X10 90 9 10X11 110 2 11X12 132 6 12X13 156 3 13X14 182 2 14X15 210 3 15X16 240 6 16X17 272 2 17X18 306 9 18X19 342 9 19X20 380 2 20X21 420 6 21X22 462 3 22X23 506 2 23X24 552 3 24X25 600 6 25X26 650 2 26X27 702 9 27X28 ...