Skip to main content

multiples of 12

Multiplication Table for 12    
12     x       1       =       12
12     x       2       =       24
12     x       3       =       36
12     x       4       =       48
12     x       5       =       60
12     x       6       =       72
12     x       7       =       84
12     x       8       =       96
12     x       9       =       108
12     x       10     =       120
12     x       11     =       132
12     x       12     =       144
12     x       13     =       156
12     x       14     =       168
12     x       15     =       180
12     x       16     =       192
12     x       17     =       204
12     x       18     =       216
12     x       19     =       228

12     x       20     =       240

As shown in the above multiplication table, multiples of 12 are

12,24,36,48,60,72,84,96,108,120,........ 


Remaining multiples from 12 to 1200 are shown in the below table



12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
312
324
336
348
360
372
384
396
408
420
432
444
456
468
480
492
504
516
528
540
552
564
576
588
600
612
624
636
648
660
672
684
696
708
720
732
744
756
768
780
792
804
816
828
840
852
864
876
888
900
912
924
936
948
960
972
984
996
1008
1020
1032
1044
1056
1068
1080
1092
1104
1116
1128
1140
1152
1164
1176
1188
1200

Comments

Popular posts from this blog

Average of first n even numbers

Even numbers are 2,4,6,8,10,…. Average = sum of elements/ no of elments Now we will see the sum of elements: Sum of first 2 even numbers: 2+4= 6= 2(2+1) Sum of first 3 even numbers: 2+4+6= 12= 3(3+1) Sum of first 4 even  numbers: 2+4+6+8=20= 4(4+1) Sum of first 5 even numbers: 2+4+6+8+10 = 30 = 5(5+1) Sum of first n even numbers: 2+4+6+8+10+. . . . .  n numbers= n(n+1) Now we will see average: Average of first 2 even numbers= (2+4)/2                                                           = 6/2                              ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

MULTIPLICATION OF TWO CONSECUTIVE NUMBERS

If you observe the sum of each digit in the Multiplication of two consectuive no.  pattern repeating:  2 6 3  2 3 6 2 9 9  n X n+1 Multiplication of two consectuive no. Sum of two digits 1X2 2 2 2X3 6 6 3X4 12 3 4X5 20 2 5X6 30 3 6X7 42 6 7X8 56 2 8X9 72 9 9X10 90 9 10X11 110 2 11X12 132 6 12X13 156 3 13X14 182 2 14X15 210 3 15X16 240 6 16X17 272 2 17X18 306 9 18X19 342 9 19X20 380 2 20X21 420 6 21X22 462 3 22X23 506 2 23X24 552 3 24X25 600 6 25X26 650 2 26X27 702 9 27X28 ...