Skip to main content

FIBONACCI NUMBERS OR SERIES

Fibonacci numbers
every number after the first two is the sum of the two before numbers. Fibonacci sequence is started from 0. The following table describes the how to write the Fibonacci numbers.
Fibonacci sequence: 0,1,1,2,3,5,8…..
Sl No
Sum
Fibonacci series
0
0
0
1
1
1
2
0+1
1
3
1+1
2
4
1+2
3
5
2+3
5
6
3+5
8
7
5+8
13
8
8+13
21
9
13+21
34
10
21+34
55
11
55+34
89
12
55+89
144
13
89+144
233
14
144+233
377
14
233+377
610
15
377+610
987
16
610+987
1597
17
987+1597
2584
18
1597+2584
4181
19
2584+4181
6765
20
4181+6765
10946

From above table we can write the Fibonacci  series

0
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946


In many competitive exams the problems from series are asked. In series problems there is a chance of asking questions from Fibonacci series.
Problem 1: 0,1,1,2,3,5,____
Problem 2: 0,1,1,2,3,5,8,13,_
Problem 3: 0,1,1,2,3,5,8,13,21,34,55,89,__
Problem 4 : 2,3,5,8,_,21
Problem 5 : 5,8,13,_,34.

Like above the problems are asked on Fibonacci series.

Comments

Popular posts from this blog

pythagoras triangle numbers from difference between two adjacent numbers

1 2 =1x1=1                           ---->3 2 2 =2x2=4                           ---->5 3 2 =3x3=9                           ---->7 4 2 =4x4= 16                           ----> 9 --->(pythagoras numbers 16+9=25 ==>  4 2 +3 2   = 5 2 ) 5 2 =5x5= 25                           ---->11  6 2 =6x6=36            ...

product two consecutive odd numbers

Product of two consecutive odd numbers : Even numbers are 1,3,5,7,9,11,13,15,17,19,21,23,25,..... Odd  number means when we divide a number with 2,then the remainder is equal to one. Difference between the two odd numbers is 1. Now we will discuss the product of two odd  numbers. Now the product of two even numbers assumed to be 5x7 can be written as (6-1)x(6+1).                              5x7= (6-1)x(6+1) From the above we write general formula as 5x7= (6-1)x(6+1)=6 2 -1 2  =36-1=35 Now we can observe the result as one less than the square number. So now we can observe the following table. Column 1&2 reprecent the adjacent odd numbers. Column 3 represent the product of two adjacent odd numbers. Column 4 represent  the nearest square number. This  will arrive by adding 1 to the product  of two odd ...

Square roots from n0 to n10

n  1 n  2 n  3 n  4 n  5 1  0 =1 2  0 =1 3  0 =1 4  0 =1 5  0 =1 1  1 =1 2  1 =2 3  1 =3 4  1 =4 5  1 =5 1  2 =1 2  2 =4 3  2 =9 4  2 =16 5  2 =25 1  3 =1 2  3 =8 3  3 =27 4  3 =64 5  3 =125 1  4 =1 2  4 =16 3  4 =81 4  4 =256 5  4 =625 1  5 =1 2  5 =32 3  5 =243 4  5 =1024 5  5 =3125 1  6 =1 2  6 =64 3  6 =729 4  6 =4096 5  6 =15625 1  7 =1 2  7 =128 3  7 =2187 4  7 =16384 5  7 =78125 1  8 =1 2  8 =256 3  8 =6561 4  8 =65536 5  8 =390625 1  9 =1 2  9 =512 3  9 =19683 4  9 =262144 5  9 =1953125 1  10 =1 2  10 =1024 3  10 =59049 4  10 =1048576 5  10 =9765625 n  6 n  7 n  8 n  9 n  10 6  0 =1 7  0 =1 8  0 =1 9  0 =1 10  0 =1 6...