Skip to main content

prime numbers from 1 to 1000

The prime numbers from 1 to 1000

23571113171923293137
4143475359616771737983
8997101103107109113127131137139149
151157163167173179181191193197199
211223227229233239241251257263269271
277281283293307311313317331337347
349353359367373379383389397401409419
421431433439443449457461463467479
487491499503509521523541547557563569
571577587593599601607613617619631
641643647653659661673677683691701709
719727733739743751757761769773787
797809811821823827829839853857859863
877881883887907911919929937941947
953967971977983991997


By seeing above the table of prime numbers from 1 to 1000 we can observe that 168 prime numbers are there.

by seeing the below table we can observe how the prime numbers are distributed.

1-100
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
25
101-200
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
21
201-300
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
16
301-400
307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397
16
401-500
401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499
17
501-600
503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599
14
601-700
601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691
16
701-800
701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797
14
801-900
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
15
901-1000
907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997

14



there are 21 prime numbers are there between the 101 to 200. similarly we can observe other numbers in the above table. 



Comments

Popular posts from this blog

average of first 100 odd numbers

  Odd  numbers are 1,3,5,7,9,…. Average = sum of elements/  no  of elments Now we will see the sum of elements: Sum of first 2 odd  numbers: 1+3= 4= 2 2 Sum of first 3 odd  numbers: 1+3+5= 9= 3 2 Sum of first 4 odd  numbers: 1+3+5+7=16= 4 2 Sum of first 5 odd  numbers: 1+3+5+7+9 = 25 = 5 2 Sum of first n odd  numbers: 1+3+5+7+9+. . . . .  n numbers= n 2 Now we will see average: Average of first 2 odd numbers= (1+3)/2                                                           = 4/2                           ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

average of first n natural numbers

The natural numbers are 1,2,3,4,5,. . . . . . now we will see the sum of natural numbers                       sum of first 3 natural numbers= 1+2+3=6 the above can be written as                      sum of first 3 natural numbers= 1+2+3=6=3(3+1)/2                      sum of first 4 natural numbers= 1+2+3+4=4(4+1)/2                      then sum of n natural numbers=1+2+3+......n terms=n(n+1)/2 then the average formula = sum of elements/no of elements                     the average of n natural numbers= sum of elements/ no of elements                                                ...