Skip to main content

square of a number which is before a base number

square of a number: n^2=(n+1)^2-(n+1)-n
                 square of a number =square of a after number-(after number)-(number)
                       example=9^2=10^2-10-9
                                            =100-10-9
                                            =100-19
                                            =81
                                      19^2=20^2-20-19
                                             =400-39
                                            =361
                                      29^2=30^2-30-29
                                             =900-30-29
                                             =841
                                      39^2=40^2-40-39
                                              =1600-40-39
                                              =1521
                                      49^2=50^2-50-49
                                            =2500-50-49
                                           =2401
                                      59^2=60^2-60-59
                                               =3600-119
                                               =3481
                                      69^2=70^2-70-69
                                             =4900-70-69
                                             =4761
                                      79^2=80^2-80-79
                                              =6400-80-79
                                             = 6241
                                      89^2=90^2-90-89
                                               =8100-90-89
                                              =7921
                                     99^2=100^2-100-99
                                             =10000-199
                                             =9801
                                     In the same way we can write square of remaining  numbers

Comments

Popular posts from this blog

average of first 100 odd numbers

  Odd  numbers are 1,3,5,7,9,…. Average = sum of elements/  no  of elments Now we will see the sum of elements: Sum of first 2 odd  numbers: 1+3= 4= 2 2 Sum of first 3 odd  numbers: 1+3+5= 9= 3 2 Sum of first 4 odd  numbers: 1+3+5+7=16= 4 2 Sum of first 5 odd  numbers: 1+3+5+7+9 = 25 = 5 2 Sum of first n odd  numbers: 1+3+5+7+9+. . . . .  n numbers= n 2 Now we will see average: Average of first 2 odd numbers= (1+3)/2                                                           = 4/2                           ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

average of first n natural numbers

The natural numbers are 1,2,3,4,5,. . . . . . now we will see the sum of natural numbers                       sum of first 3 natural numbers= 1+2+3=6 the above can be written as                      sum of first 3 natural numbers= 1+2+3=6=3(3+1)/2                      sum of first 4 natural numbers= 1+2+3+4=4(4+1)/2                      then sum of n natural numbers=1+2+3+......n terms=n(n+1)/2 then the average formula = sum of elements/no of elements                     the average of n natural numbers= sum of elements/ no of elements                                                ...