Skip to main content

square of a number which is before a base number

square of a number: n^2=(n+1)^2-(n+1)-n
                 square of a number =square of a after number-(after number)-(number)
                       example=9^2=10^2-10-9
                                            =100-10-9
                                            =100-19
                                            =81
                                      19^2=20^2-20-19
                                             =400-39
                                            =361
                                      29^2=30^2-30-29
                                             =900-30-29
                                             =841
                                      39^2=40^2-40-39
                                              =1600-40-39
                                              =1521
                                      49^2=50^2-50-49
                                            =2500-50-49
                                           =2401
                                      59^2=60^2-60-59
                                               =3600-119
                                               =3481
                                      69^2=70^2-70-69
                                             =4900-70-69
                                             =4761
                                      79^2=80^2-80-79
                                              =6400-80-79
                                             = 6241
                                      89^2=90^2-90-89
                                               =8100-90-89
                                              =7921
                                     99^2=100^2-100-99
                                             =10000-199
                                             =9801
                                     In the same way we can write square of remaining  numbers

Comments

Popular posts from this blog

Average of first n even numbers

Even numbers are 2,4,6,8,10,…. Average = sum of elements/ no of elments Now we will see the sum of elements: Sum of first 2 even numbers: 2+4= 6= 2(2+1) Sum of first 3 even numbers: 2+4+6= 12= 3(3+1) Sum of first 4 even  numbers: 2+4+6+8=20= 4(4+1) Sum of first 5 even numbers: 2+4+6+8+10 = 30 = 5(5+1) Sum of first n even numbers: 2+4+6+8+10+. . . . .  n numbers= n(n+1) Now we will see average: Average of first 2 even numbers= (2+4)/2                                                           = 6/2                              ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

product two consecutive odd numbers

Product of two consecutive odd numbers : Even numbers are 1,3,5,7,9,11,13,15,17,19,21,23,25,..... Odd  number means when we divide a number with 2,then the remainder is equal to one. Difference between the two odd numbers is 1. Now we will discuss the product of two odd  numbers. Now the product of two even numbers assumed to be 5x7 can be written as (6-1)x(6+1).                              5x7= (6-1)x(6+1) From the above we write general formula as 5x7= (6-1)x(6+1)=6 2 -1 2  =36-1=35 Now we can observe the result as one less than the square number. So now we can observe the following table. Column 1&2 reprecent the adjacent odd numbers. Column 3 represent the product of two adjacent odd numbers. Column 4 represent  the nearest square number. This  will arrive by adding 1 to the product  of two odd ...