Skip to main content

Multiples of numbers from 21 to 25

Multiples of number 21 is shown in below table
21
42
63
84
105
126
147
168
189
210
231
252
273
294
315
336
357
378
399
420

Multiples of number 22 is shown in below table
22
44
66
88
110
132
154
176
198
220
242
264
286
308
330
352
374
396
418
440

 Multiples of number 23 is shown in below table
23
46
69
92
115
138
161
184
207
230
253
276
299
322
345
368
391
414
437
460

 Multiples of number 24 is shown in below table
24
48
72
96
120
144
168
192
216
240
264
288
312
336
360
384
408
432
456
480

Multiples of number 25 is shown in below table
25
50
75
100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500

Comments

Popular posts from this blog

average of first 100 odd numbers

  Odd  numbers are 1,3,5,7,9,…. Average = sum of elements/  no  of elments Now we will see the sum of elements: Sum of first 2 odd  numbers: 1+3= 4= 2 2 Sum of first 3 odd  numbers: 1+3+5= 9= 3 2 Sum of first 4 odd  numbers: 1+3+5+7=16= 4 2 Sum of first 5 odd  numbers: 1+3+5+7+9 = 25 = 5 2 Sum of first n odd  numbers: 1+3+5+7+9+. . . . .  n numbers= n 2 Now we will see average: Average of first 2 odd numbers= (1+3)/2                                                           = 4/2                           ...

LOGIC BEHIND MAGIC SQUARE

Assume a magic square of 3x3 A B C D E F G H I The above figure shows a 3x3 magic square. In the magic square sum of colum, row, diagnol numbers should be same A+B+C=D+E+F=G+H+I=A+D+G=B+E+H=C+F+I=A+E+I=C+E+G=sum A+B+C D+E+F G+H+I A+D+G B+E+H C+F+I A+E+I C+E+G By  seeing the  above there is 8 type of sum is available. Row wise-3,  column wise-3, diagnol wise-2. Condition#1: There are 8 different combinations are there with same sum in a magic square. In the above 8 combinations A=2 times, B= 3 times, C= 2 times, D=3 times E=4 times, F=3 times, G=2 times, H=3 times, I= 2 times Hence the above forms the condition#2. In simply condition#2, middle number E appears 4 times in 8 combinations. Hence row, column, diagnol sum should be equal. In 3x3 magic square we are taking numbers from 1 to 9. From 9 numbers we need to take 3 numbers. From...

average of first n natural numbers

The natural numbers are 1,2,3,4,5,. . . . . . now we will see the sum of natural numbers                       sum of first 3 natural numbers= 1+2+3=6 the above can be written as                      sum of first 3 natural numbers= 1+2+3=6=3(3+1)/2                      sum of first 4 natural numbers= 1+2+3+4=4(4+1)/2                      then sum of n natural numbers=1+2+3+......n terms=n(n+1)/2 then the average formula = sum of elements/no of elements                     the average of n natural numbers= sum of elements/ no of elements                                                ...